Ouroboros-E: An efficient Lattice-based Key-Exchange Protocol

Jean-Christophe Deneuville*, Philippe Gaborit†, Qian Guo‡§ and Thomas Johansson‡

*LIFO – INSA-CVL Bourges, 88 boulevard Lahitolle, 18 000 Bourges, France
jean-christophe.deneuville@insa-cvl.fr
†XLIM – University of Limoges, 123 avenue Albert Thomas, 87 000 Limoges, France
philippe.gaborit@unilim.fr
‡Lund University, Box 117, 221 00 Lund, Sweden
{qian.guo, thomas.johansson}@eit.lth.se
§University of Bergen, Box 7803, N-5020 Bergen, Norway
qian.guo@uib.no

Abstract—The BitFlipping algorithm is a hard decision decoding algorithm originally designed by Gallager in 1962 to decode Low Density Parity Check Codes (LDPC). It has recently proved to be much more versatile, for Moderate Parity Check Codes (MDPC) or Euclidean metric. We further demonstrate its power by proposing a noisy Euclidean version of it. This tweak allows to construct a lattice based key exchange analogous to the Ouroboros protocol for Hamming metric but with a reduction to the Short Integer Solution (SIS) problem. The very efficient decoding algorithm permits to consider smaller alphabets than for NTRU or Ring-LWE decryption algorithms. Overall we obtain a new protocol which competes with the recent NEW HOPE and KYBER proposals, and also with NTRU. The resulting scheme exploits the cyclicity of the error, and benefits from the security of the renowned SIS problem.

I. INTRODUCTION

The NTRU lattice-based protocol was introduced in 1996. This protocol was a major breakthrough since it made practical lattice-based cryptography by the use of cyclicity, which made the size of the public key very small. Meanwhile the security of the system did not rely on a classical problem like SIS but rather relied on finding small (Euclidean) weight vectors in a special matrix generated by small weight vectors. Even if this type of problem is still hard to attack, it remains a specific and not a general problem (although for extreme parameters, not used in practice, such a reduction could be obtained [15]). This means that there may exist specific better attacks for this problem. A few years later, Regev introduced the LWE algorithm, based on a general problem, and in 2010 an ideal-ring version was proposed in [12]. The latter has the advantage to be both practical (like NTRU) and to benefit from a reduction to a general problem based on ideal-rings. A similar idea of using a dual small weight vector generator matrix as trapdoor was also used for other metrics: MDPC codes [13] (based on Gallager’s LDPC codes) for Hamming metric, and LRPC codes [8] for rank metric. These decoding approaches see the decoding algorithm purely as a decoding algorithm, when the NTRU decryption algorithm does not decode but recover the plaintext by using modular properties and the fact that there is a controlled noise of quadratic size. An equivalent approach to RLWE was also proposed in 2016 for Hamming and rank metric, the HQC and RQC protocols [1].

In 2016, Guo and Johansson [9] proposed a decoding algorithm (and an encryption scheme) for the Euclidean metric in the spirit of MDPC and LRPC codes but as for NTRU, the associated encryption algorithm relies on finding small weight vectors in a specific matrix. The advantage of their approach is that as for MDPC and LRPC codes, the purely decoding approach is more efficient than the decryption approach of NTRU.

In 2017 Deneuville et al. [7] introduced Ouroboros for Hamming metric which is based on a modification of the MDPC algorithm: a noisy-MDPC decoder. This permits to benefit from the nice feature of the MDPC decoder for decryption, together with a reduction to a generic problem (decoding random quasi-cyclic codes) rather than on a specific problem (finding very small vectors in a code generated by very small weight vectors). In this present paper we adapt the Ouroboros approach to Euclidean metric context.

The different previous approaches for ideal-lattices are as follows:

• NTRU has a security reduction to a specific problem (NTRU lattices) and deals with quadratic size error (of the form $x \cdot y$ for x and y small weight vectors embedded with polynomial multiplication). NTRU has an efficient decryption algorithm but has to deal with quadratic size errors,
• RLWE has a reduction to a general problem and deals with quadratic size errors of the form $x_1 \cdot y_2 + x_2 \cdot y_1$ with an efficient decryption algorithm,
• Guo-Johansson decryption algorithm is based on a decoding approach (a p-ary BitFlipping algorithm in the spirit of MDPC or LRPC codes), for NTRU-like matrices. It is not necessarily efficient for decoding large weight errors, but is very efficient to decode small norm errors with small coordinates (typically $\{-1, 0, 1\}$), so that in practice it is more efficient to deal with smaller errors for a less efficient algorithm than dealing with larger errors.
for a more efficient decoding algorithm (like NTRU or RLWE). In practice it means that it is possible to consider smaller alphabets than for NTRU or RLWE for the same type of decryption failure rate (DFR). The security reduction of the Guo-Johansson encryption algorithm is similar to NTRU with a specific problem.

In this paper we develop the Ouroboros approach for the Guo-Johansson encryption algorithm which permits to obtain as for RLWE a new encryption scheme with a security reduction to a general problem, but also benefits from an efficient decryption algorithm: the noisy p-ary BitFlipping algorithm for Euclidean metric, applied on smaller errors to decode. The general idea of Ouroboros is to use the structure of the quadratic size error to decode: starting from a quadratic decoding algorithm, the noisy q-ary-ary BitFlipping algorithm introduced in this paper.

Overall our new protocol benefits from the good features of the Guo-Johansson decoding algorithm but has also a reduction to a general problem. In practice it permits to obtain much smaller alphabets than for NTRU, RLWE or the recent Kyber [5] and NewHope [2]. We consider alphabets of size 512 when other protocols consider sizes between 2048 and 12289. Our approach may permit to obtain a 20% gain in the size of the public key for similar security levels and DFR.

Organization. The rest of this paper is organized as follows: Sec. II provides some background on notations and the SIS problem, then a lattice version of the BitFlipping algorithm is proposed in Sec. III, along with a key exchange protocol. A security proof is presented in Sec. IV.

II. BACKGROUND

A. Notations

Throughout this paper, \mathbb{Z} denotes the set of integers and \mathbb{F}_q (for $q \in \mathbb{Z}$ a prime or a power of a prime) a finite field. Vectors and polynomials (resp. matrices) will be denoted in bold lower (resp. upper) case. While the Coding Theory community uses row vectors, fellows from Lattices prefer column notation. Since our work considers alphabets of size q, we have that $\omega(\cdot)$ and $\| \cdot \|$ respectively the Hamming weight of a vector and its Euclidean norm. Formally, for $v \in \mathbb{F}_q^n$, we have: $\omega(v) = \text{card}(\{i \in [0, n-1] \text{ s.t. } v_i \neq 0\})$, and $\|v\| = \sqrt{\sum_{i=0}^{n-1} v_i^2}$. Additionally, we denote $S_w^\omega(\mathbb{F}_2)$ the set of words in \mathbb{F}_2^n whose metric is equal to w. Formally: $S_w^\omega(\mathbb{F}_2) = \{x \in \mathbb{F}_2^n,\text{ such that } \omega(x) = w\}$ for Hamming metric, and $S_w^\omega(\mathbb{F}_q) = \{x \in \mathbb{F}_q^n,\text{ such that } \|x\| = w\}$ for Euclidean metric.

Let V denotes a vector space of dimension n over \mathbb{F}_q for some positive $n \in \mathbb{Z}$. Elements of V can be interchangeably considered as vectors or polynomials in $\mathcal{R} = \mathbb{F}_q[x]/(x^n - 1)$.

For $u, v \in V$, we define their product similarly as in \mathcal{R}, i.e. $uv = w \in V$ with $w_k = \sum_{i+j=k} u_i v_j$, for $k \in [0, n-1]$.

In the following, \mathcal{I}_d denotes the set $\{-d, 0, \ldots, d\}$, $x_0^{(d)}$ be $[\frac{q}{2d+1}](1, 0, \ldots, 0)$, and $y_0^{(d)}$ be $[\frac{q}{2d+1}](1, 0, \ldots, 0)$.

B. Lattice problems

In this Section, we recall one of the most famous average-case lattice problems that has a connection to worst-case lattice problems, namely the Short Integer Solution (SIS). The security of the Ouroboros-E protocol described in Sec. III-A will rely on the hardness of this problem.

Definition 1 (SIS$_{q,n,m,\beta}$ problem). Given $A \xleftarrow{\$} \mathbb{F}_q^{n \times m}$, the SIS$_{q,n,m,\beta}$ problem asks to find a non-zero vector $z \in \mathbb{Z}^m$ such that $Az = 0$ and $\|z\| \leq \beta$.

Definition 2 (SIS$_{q,n,m,d}$ distribution). Sample $A \xleftarrow{\$} \mathbb{F}_q^{n \times m}$ and $z \xleftarrow{\$} \{-d, \ldots, 0, \ldots, d\}^m$ uniformly at random, and output (A, Az).

Definition 3 (Search SIS$_{q,n,m,d}$). Let χ denote the SIS$_{q,n,m,d}$ distribution. Given $(A, t) \leftarrow \chi$, find $z \in \{-d, \ldots, 0, \ldots, d\}^m$ such that $Az = t$.

Definition 4 (Decisional SIS$_{q,n,m,d}$). Given $(A, t) \in \mathbb{F}_q^{n \times m} \times \mathbb{F}_q^n$, the SIS$_{q,n,m,d}$ decisional problem asks to decide with negligible advantage whether it comes from the SIS$_{q,n,m,d}$ distribution or the uniform distribution over $\mathbb{F}_q^{n \times m} \times \mathbb{F}_q^n$.

A simple pigeonhole argument allows to see that in order for a solution to the problem to exist, both the norm β and the number of columns m must be large enough, namely $\beta \geq \sqrt{n \log_2 q}$ and $m \geq \lceil n \log_2 q \rceil$. For the last two problems where an upper bound d on the absolute value of the coefficients is provided, the relation between the parameters defines the hardness of the problem. For $d \ll q^{n/m}$, the SIS$_{q,n,m,d}$ problem has only one solution with high probability, and the problem is said of low-density. On the contrary for $d \gg q^{n/m}$, the SIS$_{q,n,m,d}$ distribution gets closer to the uniform distribution over $\mathcal{U}(\mathbb{F}_q^{n \times m} \times \mathbb{F}_q^n)$. Therefore, it is reasonable to argue that the hardest instances of the SIS problem are those for which $d \approx q^{n/m}$ [14].

III. PROPOSAL

A. Euclidean Ouroboros: Ouroboros-E

To construct a lattice key exchange analogue of the Ouroboros protocol, we need to introduce some modifications. We adopt in the general case that $\hat{x} \approx \hat{d} \approx \frac{\log \mathcal{S}_w}{\log \mathcal{S}_{\min}}$ rather than from $\mathcal{S}_0(\mathbb{F}_2)$, where $d \approx O(w/\sqrt{n})$. In this case, we can let $x = x_0^{(d)} + \hat{x}$ and $y = y_0^{(d)} + \hat{y}$, which is preferred in decoding. We have other proposals in-between, by using a different noise distribution.
We also introduce the noisy-\textit{q}-ary-BitFlipping, described in Alg. 1. It is a fast decoding algorithm for the efficient variant with \(d = 1 \) which is the case we propose. The generalization to \(d > 1 \) is direct, but additional optimization is necessary.

With these modifications we now give the new Ouroboros-E protocol (Ouroboros using Euclidean metric) using the proposed noisy-\textit{q}-ary-BitFlipping algorithm, depicted in Fig. 1. It requires a Hash function from \(\{0,1\}^* \) which produce small norm vectors in \(S^{n}_{\text{even}}(\mathbb{F}_q) \) for some \(c > 1 \). Such functions can be found in NewHope for instance.

B. A noisy \textit{q}-ary bit flipping algorithm

We modify the \textit{q}-ary iterative decoding algorithm [9] in Alg. 1 with tweaks for managing noisy syndromes and introducing efficient performance. The algorithm takes as input the two known vectors \(x, y \) of the form as described above, a known (syndrome) vector \(e_c \), and algorithm parameter \(t \) for the number of iterations. The decoding algorithm will deliver \(R_1, R_2 \in I^d_1 \) such that \(e_c-xR_2+yR_1 \) is very small.

This new algorithm is a one-step hard-decision version aiming for the decoding efficiency, which also adopts the special structure of the Ouroboros family of Key Exchange protocols [7]. In the description, the \textit{rot} operation transforms a polynomial (vector) over the ring \(\mathbb{R} \) to a matrix over \(\mathbb{F}_q \).

As we only consider \(d = 1 \) in the proposal, we have 9 signal points to place (two significant entries are chosen in a parity-check equation and each of them is sampled from \(\{-1, 0, 1\} \)). We equally divide the cycle \([0, q) \) (mod \(q \)) into 9 intervals and make decisions accordingly. The latter is trivial and adopted in almost all lattice-based cryptosystems.

The non-trivial part is that, other than some small noise added (e.g., the noise variable \(e \) in Alg. 1), the noise entries in one parity-check equation are also signal points in several other parity-check equations, which can be corrected iteratively. Thus, if the majority of the secret entries are correctly decided in the first iteration, then the noise in the second iteration will be much smaller, which leads to better decisions, and so on and so forth.

Therefore, the field size can be highly reduced as we only need a good success probability in the first iteration – in contrast to other schemes requiring the one-iteration\(^1\) error probability close to 0.

IV. Security

A. Security model

Key Encapsulation Mechanism (KEM). The proposed Key Exchange protocol follows the KEM paradigm. It is meant to exchange (ephemeral) session keys using a public key encryption scheme. Therefore, it is sufficient to prove that the scheme satisfies INDistinguishability under Chosen Plaintext Attacks (IND-CPA for short).

Beyond passive adversaries. Notice that it is pretty straightforward to obtain a CCA-secure KEM from a CPA onesimply by involving the message (or key being exchanged) in the hash (the value committed by Bob in the second step). On recovering Bob’s randomness \(r_1 \) and \(r_2 \), Alice can check whether Bob followed the protocol or tried to fool her.

B. Main theorem

The semantic security of Ouroboros-E relies on the following problem: finding the exchanged secret given \(\text{pk} \) and the transcripts. (Lattice attacks targeting key-recovery are covered Sec. IV-C.) The following (main) theorem reduces these two problems to the hardness of the SIS problem.

\(^1\)These decoding procedures only run one iteration.
Theorem 1. Ouroboros-E is IND-CPA secure under the SIS assumption.

The proof follows the same ideas as the original one from [1, Proof of Theorem 1].

Proof. To prove the IND-CPA property, we need to prove that an adversary A is unable to distinguish between honest and fake runs of the protocol. We are going to proceed in a sequence of games moving from the real world with a valid execution of the protocol, to an idealistic version where both the ciphertext and the key are random. Let A be a probabilistic polynomial time adversary against the IND-CPA of our scheme and consider the following games where we consider that A receives the encapsulation at the end of each game.

Game G_1: This game corresponds to an honest run of the protocol. In particular, the simulator has access to all keys / randomness.

Game G_2: Now the simulator picks uniformly at random x, y (resulting in a random s). He then proceeds honestly. An adversary distinguishing between those two games, can distinguish between a well-formed pk and a random one. The public key in the first game correspond to a valid SIS instance, while it is a random one in the second. Hence $\text{Adv}^{G_1}_{A} \leq \text{Adv}_{\text{SIS}}(\lambda)$.

Game G_3: Now the simulator also picks uniformly at random e, r_1 and r_2 and uses them to generate s_e, s_r.

An adversary has access to:

$$
\begin{pmatrix}
 s_r \\
 s_e
\end{pmatrix} =
\begin{pmatrix}
 I_n & 0 \\
 0 & I_n
\end{pmatrix}
\begin{pmatrix}
 r_1 \\
 e \\
 r_2
\end{pmatrix}^T
$$

The syndrome (s_r, s_e) follows the SIS distribution in game G_2 and the uniform distribution over \mathbb{F}_q^n in G_3. If an adversary is able to distinguish games G_2 from G_3, then a simulator can break the underlying problem. Hence $\text{Adv}^{G_2}_{A} \leq \text{Adv}_{\text{SIS}}(\lambda)$.

Therefore, a PPT adversary A breaking the protocol with non negligible advantage can be used to solve the SIS problem.

\[\square \]

C. Lattice attacks

Due to space restrictions, we only mention the attacks considered to set the parameters. We refer the reader to [3] and its citations for a panorama of such attacks.

The most trivial attack would be an exhaustive search one the secret key x, y, where each part is a trinary n-dimensional vector with roughly the same number of coordinates equal to -1, 0, and 1. Finding one part of secret key therefore requires $(n^3/n)/n$ operations, where the division by n accounts for the ring structure. Such attacks are way impractical.

Lattice reduction is probably the most famous type of attacks among lattice attacks. The best lattice reduction algorithm is BKZ 2.0 [6]. Its running time is exponential in the lattice dimension n and strongly depends on the root Hermite factor (RHF) δ. A conservative estimate for the logarithm of the running time is given in [11] by: $t_{BKZ}(\delta) = 1.8/\log(\delta) \approx 110$. Such attacks have been considered out of range for RHF below 1.005. They tend to be superseded by sieving and/or enumeration approaches.

Hybrid attacks were introduced in [10] and benefit from the best of the two previous approaches. Nevertheless, due to the dimension of the lattices considered, they are also inefficient.

Enumeration algorithms performs better than sieving algorithms for small dimensions, but have a much worse asymptotic complexity than the latter, both in time and space.

Finally, the best (known) sieving algorithm [4] runs in time $(3/2)^{n/2+o(n)} \approx 2^{0.292n}$ and space $(4/3)^{n/2+o(n)} \approx 2^{0.207n}$. We set our parameters to make such attacks out of range.

D. Parameters

In Tab. I, threshold denotes the maximum number of iterations to recover the error, DFR and RHF stands for “decription failure rate” and “root Hermite factor” respectively, and t_{LS} and s_{LS} denote the time and space required for best known lattice sieving techniques.

E. Further works

The DFR reported in Tab. I was verified experimentally. We believe it is much below 2^{-32} and actually closer to $2^{-\lambda}$ for λ
bits of security. This belief is supported by other experiments on smaller moduli, plotted in Fig. 2. A more precise analysis will be conducted in a extended version of this work.

Assuming the binary logarithm of the DFR behaves like a quadratic function of q (which seems reasonable given the shape of the curve induced by the plots), we can derive a conservative extrapolation. The latter gives $\text{DFR}(512) < 2^{-130}$.

It is also possible to instantiate the Ouroboros protocol in a regular, non-ideal way. While this might give more confidence about the underlying problems, this would yield much worse parameters.

Further works will also study the dual version of this protocol, where the public key is no longer an SIS instance of the secret key, but rather an LWE instance of it, i.e. a lattice point shifted by some small secret noise. This version was not detailed here due to space restrictions.

<table>
<thead>
<tr>
<th>Instance</th>
<th>n</th>
<th>q</th>
<th>d</th>
<th>threshold security</th>
<th>DFR</th>
<th>RHF</th>
<th>lDA</th>
<th>$\text{h_{DA}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toy</td>
<td>293</td>
<td>512</td>
<td>18</td>
<td>80</td>
<td>$\ll 2^{-32}$</td>
<td>1.0033</td>
<td>85</td>
<td>60</td>
</tr>
<tr>
<td>Standard</td>
<td>389</td>
<td>512</td>
<td>20</td>
<td>100</td>
<td>$\ll 2^{-32}$</td>
<td>1.0025</td>
<td>113</td>
<td>80</td>
</tr>
<tr>
<td>Advanced</td>
<td>491</td>
<td>512</td>
<td>23</td>
<td>128</td>
<td>$\ll 2^{-32}$</td>
<td>1.0020</td>
<td>140</td>
<td>99</td>
</tr>
</tbody>
</table>

Fig. 2. Logarithm of the observed probability that a decryption failure occurs as function of the modulus q (dots), and a conservative quadratic approximation (curve).

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
</table>